最新最快汽车新闻
太阳能光伏网

剑桥大学利用机器学习监控驾驶员"工作量" 有助于提高道路安全

研究人员开发出自适应算法,可以预测驾驶员何时能够安全地与车载系统交互或接收消息,例如交通警报、来电或行车指示,从而提高道路安全性。据外媒报道,剑桥大学(University of Cambridge)的研究人员与捷豹路虎(JLR)合作,将行车上路实验、机器学习和贝叶斯滤波(Bayesian filtering)技术结合起来,以可靠、连续地测量驾驶员“工作量”。相对来说,在陌生的地区驾驶可能会提高驾驶员工作量,而每日上下班的驾驶工作量可能较低。

(图片来源:剑桥大学)

由此产生的算法具有很强的适应性,可以近乎实时地对驾驶员的行为和状态、路况、道路类型或驾驶员特征的变化做出响应。这些信息可以整合至车载系统,如信息娱乐和导航、显示器、高级驾驶员辅助系统(ADAS)等。然后,所有的驾驶员-车辆交互都可以定制,以优先考虑安全性并提升用户体验,提供自适应人机交互。例如,只有在工作量较低时才会提醒驾驶员,使其可以在更紧张的驾驶场景中把全部注意力集中在道路上。

最新相关

LG和联发科展示移动出行解决方案

4月29日,出行领域技术领导者LG电子(LG)携手全球半导体公司联发科技,在上海国际汽车工业展览会(Auto Shanghai 2025)上,展示其基于安卓系统的并发多用户(CMU)框架,并将其应用于车载信息娱乐系统...